
Docs › How-to Guides › Set up a subnet router

Site-to-site networking
Use site-to-site layer 3 (L3) networking to connect two subnets on your Tailscale network with each
other. The two subnets are each required to provide a subnet router but their devices do not need
to install Tailscale. This scenario applies to Linux subnet routers only.

The subnet routers in this example are running Ubuntu 22.04 x64.

For this scenario, let’s say you have two subnets with no connectivity between each other, and the
subnet routes are 10.0.0.0/20 and 10.118.48.0/20.

Search...

This scenario will not work on subnets with overlapping CIDR ranges, nor with 4via6 subnet
routing.

Step 1: Run Tailscale and specify network configuration

For both subnets, choose a node to serve as a subnet router. For the 10.0.0.0/20 subnet, we’ll
use 10.0.0.2 as the subnet router. For the 10.118.48.0/20 subnet, we’ll use 10.118.48.2 as the
subnet router. On both subnet routers, install Tailscale, enable IP forwarding, and start the
Tailscale client with the appropriate flags to serve as site-to-site networking subnet routers:

curl -sSL https://tailscale.com/install.sh | sh

echo 'net.ipv4.ip_forward = 1' | sudo tee -a /etc/sysctl.conf

echo 'net.ipv6.conf.all.forwarding = 1' | sudo tee -a /etc/sysctl.conf

sudo sysctl -p /etc/sysctl.conf

1

On the 10.0.0.2 device, advertise routes for 10.0.0.0/20:

tailscale up --advertise-routes=10.0.0.0/20 --snat-subnet-routes=false --accept-routes

The tailscale up command flags used are:

2

–-advertise-routes : Exposes the physical subnet routes to your entire Tailscale network.

–-snat-subnet-routes=false : Disables source NAT. In normal operations, a subnet device will
see the traffic originating from the subnet router. This simplifies routing, but does not allow
traversing multiple networks. By disabling source NAT, the end machine sees the LAN IP
address of the originating machine as the source.

–-accept-routes : Accepts the advertised route of the other subnet router, as well as any
other nodes that are subnet routers.

https://tailscale.com/
https://tailscale.com/kb
https://tailscale.com/kb/guides/
https://tailscale.com/kb/1019/subnets/
https://tailscale.com/kb/1019/subnets
https://tailscale.com/kb/1201/4via6-subnets/
https://tailscale.com/kb/1080/cli/#up

This step is not required if using autoApprovers .

Open the machines page in the admin console, and locate the devices that you configured as
subnet routers. You can look for the Subnets badge in the machines list, or use the has:subnet
filter in the search bar to see all devices advertising subnet routes. For each device that you need
to approve, click the icon at the end of the table, and select Edit route settings. In the Edit
route settings panel, approve the device.

The Tailscale side of the routing is complete.

Likewise on the 10.118.48.2 device, advertise routes for 10.118.48.0/20:

tailscale up --advertise-routes=10.118.48.0/20 --snat-subnet-routes=false --accept-route

3

Configure both subnet routers to clamp the maximum segment size (MSS) to the maximum
transmission unit (MTU):

iptables -t mangle -A FORWARD -i tailscale0 -o eth0 -p tcp -m tcp \

--tcp-flags SYN,RST SYN -j TCPMSS --clamp-mss-to-pmtu

4

Step 2: Enable subnet routes from the admin console

You may prefer to disable key expiry on your subnet nodes to avoid having to periodically
reauthenticate. See key expiry for more information about machine keys and how to disable their
expiry. If you are using ACL tags, key expiry is disabled by default.

Step 3: Configure the non-Tailscale devices
On each non Tailscale device on the 10 0 0 0/20 subnet that you want to connect you need to1

https://tailscale.com/kb/1018/acls/#auto-approvers-for-routes-and-exit-nodes
https://login.tailscale.com/admin/machines
https://login.tailscale.com/admin/machines?q=has%3Asubnet
https://tailscale.com/kb/1028/key-expiry
https://tailscale.com/kb/1068/acl-tags/
https://tailscale.com/kb/1068/acl-tags/#key-expiry-for-tagged-devices

Alternatively, the settings in this step can be set in your cloud environment routing, or on most
routers by adding a “next hop” static route. For any of these techniques, you are selecting the
remote network subnet as the target, and the LAN IP address of the local Tailscale subnet router as
the router.

You can now reach the LAN machines on either subnet, without requiring the LAN machines to have
Tailscale installed or running. For example, on a device that is on the 10.0.0.0/20 subnet, you could
ping a device on the 10.118.48.0 subnet (assuming both of these devices have added routes as
described above):

run this ping command from a device on the 10.0.0.0/20 subnet

ping 10.118.48.3

PING 10.118.48.3 (10.118.48.3) 56(84) bytes of data.

64 bytes from 10.118.48.3: icmp_seq=1 ttl=64 time=9.34 ms

64 bytes from 10.118.48.3: icmp_seq=2 ttl=64 time=3.85 ms

Last updated Sep 17, 2022

O N T HIS PAGE

Step 1: Run Tailscale and specify network configuration

Step 2: Enable subnet routes from the admin console
Step 3: Configure the non-Tailscale devices

RELAT ED PAGES

4via6 subnet routers
Subnet router failover

Subnet routers and traffic relay nodes

Access AWS RDS privately using Tailscale

On each non-Tailscale device on the 10.0.0.0/20 subnet that you want to connect, you need to
add a static route to the tailnet and to the remote 10.118.48.0/20 LAN:

ip route add 100.64.0.0/10 via 10.0.0.2

ip route add 10.118.48.0/20 via 10.0.0.2

1

Likewise on each device on the 10.118.48.0/20 subnet that you want to connect, add a static
route to the tailnet and to the remote 10.0.0.0/20 LAN:

ip route add 100.64.0.0/10 via 10.118.48.2

ip route add 10.0.0.0/20 via 10.118.48.2

2

The ip route commands on the client are not persistent—they need to be run again after
rebooting To make the IP route settings persistent, you could add them to your network manager
config or netplan config, depending on your setup. Alternatively, they can be managed by the
DHCP server on your network.

https://en.wikipedia.org/wiki/Hop_(networking)#Next_hop
https://tailscale.com/kb/1201/4via6-subnets/
https://tailscale.com/kb/1115/subnet-failover/
https://tailscale.com/kb/1019/subnets/
https://tailscale.com/kb/1141/aws-rds/

Access AWS RDS privately using Tailscale

Access Azure Linux VMs privately using Tailscale

SSH Keys

Docker SSH
DevSecOps

Multicloud
NAT Traversal

IPv4 vs IPv6
MagicDNS

PAM
PoLP

Overview

Pricing
Downloads

Documentation
How It Works

Compare Tailscale
Customers

Changelog
Use Tailscale Free

Company

Newsletter
Press Kit

Blog
Careers

Contact Sales
Contact Support

Community Forum
Security

Status
Twitter

GitHub

WireGuard is a registered
trademark of Jason A. Donenfeld.

© 2022 Tailscale Inc.

Privacy & Terms

https://tailscale.com/kb/1141/aws-rds/
https://tailscale.com/kb/1142/cloud-azure-linux/
https://tailscale.com/learn/generate-ssh-keys/
https://tailscale.com/learn/ssh-into-docker-container/
https://tailscale.com/learn/devsecops/
https://tailscale.com/learn/multicloud/
https://tailscale.com/blog/how-nat-traversal-works/
https://tailscale.com/kb/1134/ipv6-faq/
https://tailscale.com/blog/2021-09-private-dns-with-magicdns/
https://tailscale.com/learn/privileged-access-management/
https://tailscale.com/learn/principle-of-least-privilege/
https://tailscale.com/kb/1151/what-is-tailscale
https://tailscale.com/pricing/
https://tailscale.com/download/
https://tailscale.com/kb/
https://tailscale.com/blog/how-tailscale-works/
https://tailscale.com/compare
https://tailscale.com/customers/
https://tailscale.com/changelog/
https://tailscale.com/start/
https://tailscale.com/company/
https://gavzih9v2tc.typeform.com/to/NaDeoA4y
https://tailscale.com/files/dist/tailscale-press-kit.zip
https://tailscale.com/blog/
https://tailscale.com/careers/
https://tailscale.com/contact/sales/
https://tailscale.com/contact/support/
https://forum.tailscale.com/
https://tailscale.com/security/
https://status.tailscale.com/
https://twitter.com/tailscale
https://github.com/tailscale
https://tailscale.com/
https://tailscale.com/privacy-policy
https://tailscale.com/terms

